Branch Circuit Calculations

by Gerald Newton

October 31, 1999

1. A 20 ampere, 120 volt, 2 -wire branch circuit has a maximum load capacity of watts or volt-amperes.

Reference:

Using the following for Single Phase Circuits:
Watts $=$ Volts x Amperes x Power Factor
Volt-amperes $=$ Volts \mathbf{x} Amperes
Power Factor is the cosine of the angle between volts and amperes and varies from 0 to 1.0, lagging or leading.

Cosine Function

Answer:
Assuming that the voltage and current are in phase, the angle between the voltage and current is 0 degrees, and the Cosine of 0 is 1.0 , then the power factor is 1.0 . then Watts = 120 $\times 20 \times 1.0$ Watts $=2400$ At a power factor of 1.0, Watts and Volt-amperes are equal and volt-amperes is also 2400 .
Answer: 2400
2. A 5-kilowatt clothes dryer has a full-load current of \qquad amperes when connected to a 120/240 volt, single phase 3 -wire supply circuit. The minimum size of circuit (rating of the overcurrent device) that can be used on this circuit is \qquad amperes, with a minimum wire size of No. \qquad copper (assuming a 60 degrees C. ampacity and no listing for higher temperature devices and equipment.)

Reference:
Using the following for Single Phase Circuits:

Watts $=$ Volts \mathbf{x} Amperes \times Power Factor
Assume a power factor of $\mathbf{1 . 0}$
Amperes $=\mathbf{W a t t s} /$ Volts
Answer:
Amperes $=\mathbf{5 , 0 0 0}$ watts/240volts
Amperes $=20.8$ amperes
The minimum size overcurrent device that can be used on this circuit is $\mathbf{2 5}$ amperes. (see 240-6)
A minimum size No. 10 copper rated at 30 amperes is required. (Table 310-16)
Note: The 60 C. ampacity for No. 12 is 25 amperes, but Section 240-3(d) does not allow a No. 12 conductor on a circuit breaker greater than 20 amperes.

Answers: 20.8 amperes, 25 amperes, No. 10
3. The maximum continuous load permitted on a 20 ampere, 120 volt, 2 -wire branch circuit supplying incandescent lighting that stays on for three hours or more is \qquad watts. (Assume that the circuit breaker is not listed for 100 percent continuous load at its rating)

120 Volts

Reference:
Section 210-20(a) The rating of the overcurrent device shall not be less than 125 percent of the continuous load.
Answer:
The solution to this problem and many Code calculations can be simplified by converting the language into mathematical terms. Then rules from algebra for inequalities can be used to solve the problems.
Use ">=" to represent "greater than or equal to"
Use "<=" to represent 'less than or equal to"
"shall not be less than" is the same as "greater than or equal to" represented by ">="
Then:
Rating of Overcurrent Device >= $1.25 \times$ Continuous load
Continuous Load <= Rating of Overcurrent Device / 1.25
Continuous Load <= 20 amperes / 1.25
Continuous Load <= 16 amperes

Converting 16 amperes to Watts: Watts = 16 amperes $\times 120$ volts
Watts $=1920$ watts
Answer: 1920 watts

4. If the wattage of a single phase 120 volt appliance is given, then the full-load current can be found using the formula $I=$ \qquad .

Answer: I = Watts/120volts
5. An 800 watt 120 -volt car heater will draw a load of \qquad amperes.

Answer: I = Watts / Volts
I= 800 watts $/ \mathbf{1 2 0}$ volts
$I=6.7$ amperes
6. A 80 gallon 4500 watt 240 volt hot water heater has a load of \qquad amperes. This load is less than 20 amperes, but Section 422-13 requires that fixed storage-type water heaters that have a capacity of $\mathbf{1 2 0}$ gallons or less shall have a branch circuit rating not less than 125 percent of the nameplate rating of the water heater. The branch circuit rating then must not be less than \qquad . Since the load for this appliance is more than 13.3 amperes and it is a nonmotor-operated appliance that does not have overcurrent protection marked on the appliance the overcurrent rating shall not exceed 150 percent of the appliance rated current by section 422-11(e)(3). In this case the rating of the circuit breaker shall not greater than
\qquad . However, section 422-11(e)(3) states that if 150 percent of the appliance rating does not correspond to a standard size overcurrent device, the next larger standard size shall be permitted. So the overcurrent device shall be permitted to be \qquad amperes maximum size. The rules for selecting conductors are found in Section 210-19(a) and 240-3. The conductors shall have an ampacity not less than the load to be served or 18.75 amperes, and shall be protected in accordance with their ampacities as specified in 310-15. Section 240-3(d) limits the overcurrent protection for a No. 10 copper conductor to 30 amperes. This assumes a 60 degree \mathbf{C}. temperature rating. If the equipment, terminations, and overcurrent devices are listed for $\mathbf{7 5}$ degree C., then a No. 10 conductor would still be required since Section 240-3(d) does not allow a No. 12 with a 75 degree C. ampacity of 25 amperes to be used on a 30 ampere circuit breaker. A No. 10 copper conductor with a 25 ampere two-pole circuit breaker would also meet these rules.

Answers: 18.75 amperes, 23 amperes, 28 amperes, 30 amperes.
7. If a 277 volt fluorescent lighting fixture has a ballast with a nameplate rating of .9 amperes, the number of such fixtures that can be connected to a 2 wire 277 volt circuit
protected by a 20 ampere circuit breaker is \qquad if the fixtures are used in an office building where they will be on for $\mathbf{8}$ hours continuously each day.

Answer: The maximum allowed continuous ampacity for the $\mathbf{2 0}$ ampere circuit breaker is $\mathbf{1 6}$ amperes. $16 / .9$ = 17 fixtures.

Answer: 17
8. The maximum number of 100 watt incandescent light bulbs that can be installed on a 20 ampere $\mathbf{1 2 0}$ volt $\mathbf{2}$ wire circuit where the lights will be on for $\mathbf{1 0}$ hours a day is \qquad .

Answer:
Amperes for each light bulb = $\mathbf{1 0 0}$ watts $/ \mathbf{1 2 0}$ volts
Amperes $=.8$
$1.25 \times .8=1.0$ amperes (Multiply by 1.25 for the continuous load.)
20 amperes $/ 1.0$ amperes $=20$ light bulbs
Answer: 20
9. Section 220-3(b)(9) requires that receptacles in other than dwelling units be computed at 180 voltamperes each. The maximum number of receptacles that can be installed on a 20 ampere 120 volt circuit in a store is \qquad . The maximum number of receptacles that can be installed on a 15 ampere 120 volt circuit in a school is \qquad .

Answer:
Number of receptacles on a 20 ampere circuit $=\mathbf{1 2 0}$ volts $\mathbf{x} \mathbf{2 0}$ amperes / $\mathbf{1 8 0}$ voltamperes Number of receptacles on a 20 ampere circuit = 13
Number of receptacles on a 15 ampere circuit $=\mathbf{1 2 0}$ volts x 15 amperes / 180 voltamperes Number of receptacles on a 15 ampere circuit = 10
10. In dwelling units and in guest rooms of hotels and motels all receptacles used for general-use on 20 ampere rating or less circuits including the small appliance receptacles, laundry room receptacle and bathroom receptacle(s) are included in the general lighting load calculations of Section 220-3(a). These receptacles shall not be required to calculated at 180 voltamperes per receptacle.
True \qquad
False \qquad
Answer: False The small appliance circuits are not included in the the general lighting load calculation. See Section 220-3(b)(9) and (10)
11. In the sketch below if $S W$ - 1 is closed how many amperes will L 1 and the grounded conductor draw?

SKETCH 3

Answer: Load = 1800 watts
Amperes $=$ watts $/$ volts
Amperes $=1800$ watts $/ \mathbf{1 2 0}$ volts
Amperes $=15$ amperes
Answer: 15 amperes
12. In Sketch 3, the resistance of the 1800 watt load is \qquad . The resistance of the $\mathbf{2 0 0}$ watt load is \qquad .

Answer: $\mathrm{E}=\mathrm{IR}$ by ohms law. $\mathrm{R}=\mathrm{E} / \mathrm{I}$, Then the resistance is $\mathbf{1 2 0}$ volts / $\mathbf{1 5}$ amperes
Resistance of the 1800 watt load is 8 ohms
For the $\mathbf{2 0 0}$ watt load, first find the amperes. Amperes $=\mathbf{2 0 0}$ watts $/ \mathbf{1 2 0}$ volts, Amperes $=\mathbf{1 . 7}$ amperes.
Resistance $=120$ volts $/ \mathbf{1 . 7}$ amperes
Resistance of the 200 watt load is $\mathbf{7 0 . 6} \mathbf{~ o h m s}$
13. In sketch 3 if the grounded conductor were open and both the 1800 watt load and the 200 watt load were turned on what would the voltage be across the 200 watt load?

Answer: If the grounded conductor were open the two loads would be in series. The $\mathbf{8} \mathbf{~ o h m}$ and 70.6 ohm resistances in series add to 78.6 ohms. The amperes through both loads would be $\mathbf{2 4 0}$ volts / $\mathbf{7 8 . 6}$ ohms or 3 amperes. The voltage across the 200 watt load would be $\mathbf{7 0 . 6}$ ohms x 3 amperes or 211.8 volts.

Answer: 211.8 volts
14. In the diagram below Ia, Ib, and Ic can be found using \qquad ?

A. $I=$ Watts $/(277$ volts $\times 1.732)$
B. $I=$ watts $/ 3$
C. I = watts / ($\mathbf{4 8 0}$ volts $\times 1.732 \times$ power factor $)$

Answer: C

"The Single Phase Professor"

15. In the diagram for question 14 , if each leg serves $1 / 3$ of a balanced load of 10,000 voltamperes then what is the current in each leg? Assume that the power factor is 1.0.

Answer: $I=10,000$ voltamperes / ($\mathbf{4 8 0}$ volts x 1.732)
$I=12$ amperes
16. The minimum number of 20 ampere 120 volt branch circuits required to serve the general lighting load for a $\mathbf{3 , 0 0 0}$ square foot one family dwelling unit is \qquad circuits.

Answer: General Lighting load $=\mathbf{3}$ voltamperes $\mathbf{x} 3,000$ square ft.
General Lighting Load $=\mathbf{9 , 0 0 0}$ voltamperes.
A 20 ampere circuit supplies $\mathbf{1 2 0}$ volts $\times 20$ voltamperes or 2400 voltamperes.
9,000 voltamperes $/ \mathbf{2 4 0 0}$ voltamperes $=3.75$
Round up to 4 circuits
Answer: 4 circuits
16. In a dwelling unit at least two 20 ampere, 120 volt circuits must be provided for laundry outlets.

True \qquad
False \qquad
Answer: False See Section 210-52(f)
17. The receptacles installed to serve countertop surfaces in dwelling unit kitchens shall be supplied by two each small appliance circuits.

True \qquad
False \qquad
Answer: True See 210-52(b)(3)
Note: One small appliance circuit cannot be used to supply all the receptacles for countertops while another small appliance circuit is used to supply the other required outlets in the dining room, pantry, kitchen, breakfast room, or similar area in a dwelling unit.
18. In the diagram below the $\mathbf{1 2 0}$ volt loads are computer loads. If the line current in each phase is 40 amperes, the approximate current in the neutral is \qquad .

Answer: 80 amperes
Discussion: The switching in the computer power supplies cause the current in the neutral to be approximately double the current in the phase conductors. Special cables and "K" rated transformers are designed to supply such loads.
19. In the diagram below for derating purposes the neutral is a current carrying conductor.

True \qquad
False \qquad
Answer: True See Section 310-15(b)(4)(c)
Discussion: When the major load is nonlinear the neutral carries third harmonic currents that are approximately equal to the line currents.

20. In the diagram below if $\mathbf{I a}, \mathbf{I b}$, and Ic are equal to 50 amperes the current in the neutral is approximately \qquad amperes.

For incandescent lighting the neutral current is approximately zero when the loads are balanced.

Answer: 0 amperes

Return to electrician.com

