

Here are some common formulas that are frequently used in the field.

Options:

- Motor Formulas
- Transformer Formulas

E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

AC/DC Formulas				
To Find	Direct Current	AC / 1phase 115 v or 120 v	$\begin{array}{\|c\|} \hline \hline \text { AC / 1 phase } \\ 208,230 \text {, or } 240 \mathrm{v} \\ \hline \end{array}$	AC 3 phase All Voltages
Amps when Horsepower is Known	$\frac{\text { HP } \times 746}{\mathrm{E} \times \mathrm{Eff}}$	$\begin{gathered} \mathrm{HP} \times 746 \\ E \times \mathrm{Eff} \times \mathrm{PF} \end{gathered}$	$\begin{gathered} \mathrm{HP} \times 746 \\ \mathrm{E} \times \mathrm{Eff} \times \mathrm{PF} \end{gathered}$	$\frac{\mathrm{HP} \times 746}{1.73 \times \mathrm{E} \times \mathrm{Eff} \times \mathrm{PF}}$
Amps when Kilowatts is known	$\frac{\mathrm{kW} \times 1000}{\mathrm{E}}$	$\frac{\mathrm{kW} \times 1000}{\mathrm{E} \times \mathrm{PF}}$	$\begin{gathered} \hline \hline \mathrm{kW} \times 1000 \\ \mathrm{E} \times \mathrm{PF} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{kW} \times 1000 \\ 1.73 \times \mathrm{E} \times \mathrm{PF} \end{gathered}$
Amps when kVA is known		$\frac{\text { kVA } \times 1000}{E}$	$\frac{\text { kVA } \times 1000}{E}$	$\frac{\text { kVA } \times 1000}{1.73 \times \mathrm{E}}$
Kilowatts	$\begin{aligned} & \hline \hline 1 \times E \\ & 1000 \\ & \hline \end{aligned}$	$\frac{I \times E \times P F}{1000}$	$\frac{I \times E \times P F}{1000}$	$\begin{gathered} \hline \hline \mathrm{IXE} \times 1.73 \mathrm{PF} \\ 1000 \\ \hline \end{gathered}$
Kilovolt-Amps		$\begin{aligned} & \hline \hline 1 \times E \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 1 \times E \\ & 1000 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \frac{I \times E \times 1.73}{1000} \\ \hline \end{gathered}$
Horsepower (output)	$\frac{\underline{I \times E \times E f f}}{746}$	$\begin{array}{\|c\|} \hline \hline \text { x E x Eff } \times \text { PF } \\ \hline 746 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \hline \text { x E } \times \text { Eff } \times \text { PF } \\ 746 \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { x E } \times \mathrm{Eff} \times 1.73 \times \mathrm{PF} \\ \hline 746 \\ \hline \end{array}$

Three Phase Values

For 208 volts x 1.732 , use 360
For 230 volts x 1.732 , use 398
For 240 volts $\times 1.732$, use 416
For 440 volts $\times 1.732$, use 762
For 460 volts x 1.732 , use 797
For 480 Volts x 1.732, use 831

E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

AC Efficiency and Power Factor Formulas

To Find	Single Phase
Three Phase	
Efficiency	$\frac{746 \times \mathrm{HP}}{\mathrm{E} \times \mathrm{I} \times \mathrm{PF}}$
E $\times \mathrm{I} \mathrm{I46} \mathrm{\times PF} \mathrm{\times 1.732}$	
Power Factor	$\frac{\text { Input Watts }}{\mathrm{V} \times \mathrm{A}}$

Power - DC Circuits
Watts $=\mathrm{E} \mathrm{xl}$
Amps $=\mathrm{W} / \mathrm{E}$

Check out these Online Calculators!

If there is anything you would like to add or if you have any comments please feel free to email E.T.E. at ete@elec-toolbox.com.

