

Here are some common formulas that are frequently used in the field.

Options:

- Motor Formulas

- Transformer Formulas

E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

AC/DC Formulas						
To Find	Direct Current	AC / 1phase 115v or 120v	AC / 1phase 208,230, or 240v	AC 3 phase All Voltages		
Amps when	HP x 746	<u>HP x 746</u>	<u>HP x 746</u>	HP x 746		
Horsepower is Known	E x Eff	E x Eff X PF	E x Eff x PF	1.73 x E x Eff x PF		
Amps when	<u>kW x 1000</u>	<u>kW x 1000</u>	<u>kW x 1000</u>	<u>kW x 1000</u>		
Kilowatts is known	E	E x PF	E x PF	1.73 x E x PF		
Amps when		<u>kVA x 1000</u>	<u>kVA x 1000</u>	<u>kVA x 1000</u>		
kVA is known		E	E	1.73 x E		
Kilowatts	<u>l x E</u>	<u>I x E x PF</u>	<u>I x E x PF</u>	<u>I x E x 1.73 PF</u>		
	1000	1000	1000	1000		
Kilovolt-Amps		<u>I x E</u> 1000	<u>I x E</u> 1000	<u>I x E x 1.73</u> 1000		
Horsepower	<u>I x E x Eff</u>	I x E x Eff x PF	I x E x Eff x PF	I x E x Eff x 1.73 x PF		
(output)	746	746	746	746		

Three Phase Values
For 208 volts x 1.732, use 360
For 230 volts x 1.732, use 398
For 240 volts x 1.732, use 416
For 440 volts x 1.732, use 762
For 460 volts x 1.732, use 797
For 480 Volts x 1.732, use 831

E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

http://www.elec-toolbox.com/Formulas/Useful/formulas.htm

Useful Formulas

AC Efficiency and Power Factor Formulas					
To Find	Single Phase	Three Phase			
Efficiency	<u>746 x HP</u> E x I x PF	<u>746 x HP</u> E x I x PF x 1.732			
Power Factor	Input Watts V x A	Input Watts E x I x 1.732			

Voltage Drop Formulas					
Single Phase (2 or 3 wire)	VD =	$\frac{2 \times K \times 1 \times L}{CM}$	K = ohms per mil foot (Copper = 12.9 at 75°)		
	CM=	2K x L x I VD	(Alum = 21.2 at 75°) Note: K value changes with temperature. See Code chapter 9,		
Three Phase	VD=	1.73 x K x I x L CM	Table 8 L = Length of conductor in feet		
	CM=	1.73 x K x L x I VD	 I = Current in conductor (amperes) CM = Circular mil area of conductor 		

Check out these Online Calculators!

If there is anything you would like to add or if you have any comments please feel free to email E.T.E. at <u>ete@elec-toolbox.com.</u>

http://www.elec-toolbox.com/Formulas/Useful/formulas.htm

Back to Main Page

1997, Electricians Toolbox Etc...

